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Allllnc:t-The concept of the expaadiDa IDd contndiDa biJIIe produced by rapid thermal curvature is
applied to the detailed analysis of a eaatilever.1D additioa to a aeacral study of the modes of deformation.
the acc:*rations velocities and displac:emeDts are determiDed for a specific cue. AJtbouIb for the
example cboten. less than 10% of the fina1 p1utic curvature occ:un in the root binIe. a peatly simplified
"strona beaIII" lIlIIysis which constrains aD plastic cWormation to the root biJIIe lives a tip deftection only
6% less than the oriIinal value. The paper includes a discussioD of the c:onditioIIs wbic:h must be satisfied
such that 10000000000al inertia effects and elutic detlexions do not invalidate the analysis wben it is applied
t~ real materials.

NOTATION
A parameter determinina the rapidity of beatina

av suffix denotina averqe value
B (OIU2'/1')(plE)112

" breadth of c:antilever
d depth of c:antilever
E Youna's modulus

t. C suffices cleDotina expansion and contraction phases of binae
F stress factor
h x./I
h suffix dellCltina boundary of expandina or contrac:tina binae

h+ suffix denotiDa section just outside hinae
h- suffix cIe1lodDI section just within binae

i suffix deDotina value at beainain. of CUII'eIIt reaime of behaviour
K time dependent function in equation for thermal strain
I lenatb of cantilever

M bendina moment
max suffix dellCltina maximum value
M, fuU p1utic moment
P lonaitudinal force

P, fuU p1utic force
m mass per unit length
S shear force
I time

' •... I, times deflnina boundaries between %ODeS of behaviour
I. time at which section z enters mae
III deftexion

lllpi detlection at bqinnina of current reaime of behaviour due to some previous historY of plutic deformation
z coordinate I1on& cantilever. meuurecI from the root
y coordiDate of depth in cantilever. measured from micl-heiabt
p {(l- y)(33 - yW12

y 72M,Imi.,r
fT thermal strain
6 dw/dz

60 value of t1 at z .. o
K AIB2/l 2

A constant in equation for thermal strain
/l lid
n BI/l
p density

lI'r yield stress
t/I discontinuity in angular velocity at z~

f
lll2l<1

XT thermal curvature .. (l2Id3) frY dy
-(ll2l<1

", parameter delinin, period of beatina pulse (.. 2"'01)

1. INTRODUCTION

In a previous paper[l] it was shown that in any rigid-plastic beam subjected to sufficiently rapid
thermal curvatUre there would develop expanding and contracting plastic biqes occupying
finite lengths of the beam. A general theory was· given which demonstrated the different
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physical characteristics of the expansion phase, during which angular velocity is a continuous
function along the beam, and the contraction phase, when angular velocity is discontinuous.
The purpose of this previous paper was partly to demonstrate the necessity for the existence of
non-discrete binps, and partly to explore the possible definition of thermal curvature for an
inelastic beam. A brief application of the theory was given to show the zones of behaviour
which can occur in a free beam, but no attempt was made to analyse the deformations.

The present paper uses the general ideas of the earlier work and applies them to a detailed
study of the cantilever. The cantilever was chosen because it is the structure which has
attracted greatest attention in the literature of dynamic plasticity. The reason for this is
probably that it is a weU-defined system for experimental work. In any other type of beam (with
the exception of the free beam, which introduces experimental dil6culties) there is always some
possibility of axial restraint and thus interaction between bendin. and end-load plasticity.

The first application of dynamic plastic theory to an important practical problem was the
design in 1940 of the "Morrison" table shelter [2]. This shelter was intended to resist the
coUapse of part of a building. The striking mass was large and its velocity low, so that the
plastic hinges formed were static. The earliest work on dynamic plasticity which implies hinge
movement is that of Bohnenblust on the infinitely long beam subjected to a transverse impact
of constant velocity. This work was carried out in a defence context in 1943 but was not
published until seven years later [3]. Bohnenblust's analysis could incorporate any form of
moment-curvature relationship and good agreement was obtained with experiments on mild
steel and annealed copper. A rigid-plastic analysis of the long beam under transverse impact
was given by Conroy [4]. The encastre beam of finite length was discussed by Parkes (5, 6]: these
papers include experimental work on steel, brass and duralumin· specimens designed to
elucidate strain-rate effects.

The next type of structure to be considered in the development of riaid-plastic theory seems
to have been the free beam. Lee and Symonds [7] and Symends [8) discussed a free beam
subjected to a central transverse force which varied with time in a specified manner-trianlular,
rectangular or half sine wave forms were employed. Symonds and Leth[9] dealt with the free
beam in which the central impact was of constant velocity.

The first paper discussing a cantilever struck by a moving mass is that of Parkes [l0]:
experiments were carried out on mild steel cantilevers using both very heavy and very ligbt
strikers, and good agreement was obtained with theoretical predictions provided rate-of-strain
effects were taken into account. Mentel[ll] .carried out experiments on cantilevers with
attached tip masses, but very little of the deformation in his tests was attributable to travelling
hinges. Bodner and Symonds [l2] performed a series of tests on steel and aluminium alloy
cantilevers to assess the importance of the factors which simple rigid-plastic theory ignores:
elastic vibrations, shear deformation, extensional deformation, geometry changes, strain-rate
and strain hardening effects. Bodner and Speirs[l3] tested aluminium cantilevers whose tips
were given an impulse by an explosive capsule. The tests, which were carried out at elevated
temperatures, were compared with the original theoretical work of Parkes[lO] and with later
analyses by Bodner, Symonds and Ting which incorporated strain rate effects in the governing
equations. As might be expected they found that the significance of strain rate increased with
temperature.

Ting[l4] gave an analysis for a cantilever made from a material having strain rate
sensitivity. He assumed that strain rate is proportional to a power function of the stress in
excess of the static yield stress. Comparisons were made with the experimental results from
Bodner and Symonds [12]. He later[l5] developed a large displacement theory for the cantilever
and compared his results with the experiments of Parkes [10];

Hall, A1-Hassani and Johnson[l6] carried out a very extensive experimental programme on
the impulse loading of cantilevers. The methods of 10adiDg, all of which were stated to
correspond to Parkes' "ligbt" .strikers, included magneto-motive loading, necessitating high
electrical conductivity, and thus aluminium or copper specimens, contact explosives and
bullets. Detailed comparisons were made with Parkes[lOj theory in all cases, including his
expression for the leqth of the sbort strailht portion near the tip in the case of bullet 1oadinI.

Recent developments in the study of impulsively loaded cantilevers have inclUded work by
Hashmi, AI-Hassani and Johnson[l7] using lumped parameter models to investigate very large
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deformations: comparison was made with experiments. A quite different approach has been
that of Martin (18] who derived theorems providing a lower bound on the response time and an
upper bound on the deflection for an impulsively loaded structure: he found that on comparing
his work with Parkes(10] the response time was accurate but the deflection bound became
progressively less accurate for the lighter strikers. The idea of bounds has been developed
further by Symonds and Chan(19]. Fibre-reinforced rigid-plastic cantilevers have been studied
by Jones [20], who compared his results with Parkes[lO] and Bodner and Symonds [12].

There is an important distinction to be drawn between all of the work on cantilevers
described above, and that in the present paper. When a beam is subjected to plasticity as-the
result of rapid thermal curvature, this can only be produced by heating, since the processes of
cooling cannot take place sufficiently quickly. As a result, rapid thermal curvature is always
accompanied by longitudinal inertia force in the beam. This longitudinal force may affect the
analysis in two ways: it may reduce the value of the yield moment; and if the deflexions are
sufficiently large it may contribute significantly to the bending moment. In Sections 2-5 of the
paper we shall develop the analysis ignoring longitudinal inertia effects. In Section 6 we shall
consicter what conditions must be satisfied such that these effects are negliglble, and in the same
section we shall investigate the validity of the usual assumption of dynamic plasticity theory,
that elastic deflexions may be ignored.

The present paper begins with a study of the modes of behaviour of the cantilever subjected
to rapid thermal curvature. The analysis draws substantially on the work on the free beam in
Parkes [I], but more detailed consideration is given to the case of the instantaneously created
extensive hinge, which is of greater significance for the cantilever than for the free beam. The
zones of behaviour as functions of the rapidity of heating and of time are next determined for a
sinusoidal heating pulse, and then a detailed analysis of the accelerations, velocities and
displacements of the cantilever is given for a specific case. The development of expanding and
contracting hinges and of instantaneously created extensive hinges is clearly shown. For the
particular case chosen, the final plastic curvature occurs over nearly one quarter of the length
of the cantilever, less than 10% of it being in the root hinge.

The full analysis of the cantilever subjected to rapid thermal curvature is complicated, and
extensive numerical calculations are needed to determine the final deformations. It seems
natural therefore to look for simplifying assumptions which will reduce the labour involved
without introducing unacceptable errors. One such assumption which has been investipted in
the present paper is the concept of the strong beam, in which all deformation takes place in the
root hinge, the rest of the cantilever remaining risid even thoup the bending moment exceeds
the fuUy plastic moment. For the specific example, this approach led to a tip deflection which
was some 6% less than the value given by the full analysis.

The paper ends with discussions of longitudinal inertia forces and elastic deformations, and
the conditions which must be satisfied such that their effects do not invalidate the analysis.

2. GENERAL ANALYSIS
2.1 The modes of behaviour

We consider a risid-plastic beam of uniform section subjected to a thermal curvature XT
which varies with time but not with position. The assumptions relating to the existence and
determination of XT are discussed in the appendix to Parkes [I], and it is defined in the
Notation. The beam section and the manner of support are supposed to be such that
longitudinal inertia effects are unimportant compared with bending phenomena: the conditions
under which this will be true are discussed in detail in Section 6. Then the thermal curvature
will produce a shear force S, a bending moment M and a deftexion w at section x of the beam,
where x is a co-ordinate measured from some fixed position. The sip conventions for Xr, S, M,
w and x are shown in rig. 1. The beam is supposed to have a mass per unit length m and a full
plastic moment M", which may vary with temperature.

Then provided XT is sufficiently small there will be a rigid phase of behaviour in which no
plastic hinges develop. For higher values of XT a discrete plastic hinge may be formed, and for
still larger values there may be expanding and contracting hinges occupying varying lengths of
the beam.

We suppose that the moving boundary of an expanding or contracting hinge occurs at x =XII
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----_.

Fia. I. Element of cantilever. showing sip conventions.

and that the hinae lies on the side x < x", so tbat for x > x" the beam is riPi. It is shown in
Parkes[l] that within an expandiq or contracting hinae the velocity wand thus the anauJar
velocity ;(- dW/dx) at a given section is constant. We denote the section just within the binae
by the suftix h- and that just outside it by h+. At the boundary the slope of the beam is
continuous but this is not necessarily true of the angular velocity. In fact it is shown in
Parkes [1] that

(1)

where c;, is zero duriDa eXMDSion but not during contraction. We now apply these ideas to the
particular case of a cantilever of length I and in which x is measured from the root.

2.2 The rigid clUltiltvtr
For a cantilever in which the bending moment is everywhere less than M" we have

(2)

where Wp/ is the deftexion at the bqinning of the regime due to some previous history of plastic
deformation. By integration of the inertia loading we obtain

(3)

The bendilll moment is a maximum at the root (x =0) and a plastic binae will form there unless

- 8M,Iml4 < XT < 8M,Iml4 (4)

2.3 The cantilever with a hinge at the root
If the condition of eqn (4) is violated, a plastic hinae will form at the root of the cantilever,

producing a root slope due to the current regime of bebaviour of Bo- We then have
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and

where we have made use of the conditions S == 0 at x == I and M == Mp at x == O.
The further condition M == 0 at x == I leads to

" 3" 3M:80 ==-x-rl-38 ml

and thus

and

M == miTX(I-x)2(l+2x)+~(l-x)~21+X).

Integrating the expression for 80 and substituting back into that for the deftexion
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(5)

(6)

(7)

where the suffix i denotes the beginning of the regime and both 601 and Wpl are due to some
previous plastic behaviour.

Differentiating (7) with respect to x and t and putting x == 0, we obtain the angular velocity
at the root as

(8)

It will be noted that the shear force (eqn 5) is zero when x., 1 and when 12+ Ix - 8x2 ==
11(1 + x) where 1" 72M,lmX-rl4

• The quadratic equation leads to xii., 1&(1- 1 + Il) where
Il == {(1- 1)(33 - 1)pn. Substituting in eqn (5) we then find

M == 3:6'8
1

{63 +661 - 12 + (15 + 1)1l}(15 + 1 -1l)2.

This is a maximum value of the bending moment and we have to compare it with ± M,. For
M., +M" 1 == 1 and xll- O. For M - - M". 1 - -0.286 and xII- 0.• with XT - - 252 M,Imr.
Plasticity will occur other than at the root binge unless

-252M,Imr< XT ~72M,Imr.

The corresponding conditions when M == - Mp at x =0 are

(9)

2.4 The cantilever with an extensive hinge
The general theory of expanding and contracting hinges was developed in Parkes [1), and the

analysis of Section 2.3 of that paper can be adopted in toto. In particular it was shown that
during the expansion phase of a hinge extending from x == 0 to XII,

58 Vol. 14, No. II-E

(6)11- =02
: p

) 1/4 [ XTXT-(1/4) - ~f<XT )3/4 dt]:, + (6)1Ij. (10)
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Since 8 at a given value of x within the hinge is constant, eqn (10) gives the distribution of
angular velocity within the hinge provided that t is replaced by tx, the time at which section x
entered the hinge, and the final term is replaced by 8" the angular velocity at x at the beginning
of th~ regime (t =td.

Equation (10) can be integrated to give the velocity within the expanding hinge (0 < x ~ x,,)
as

(11)

Since, in the expansion phase, the anauJar velocity is continuous at x =x", the velocity outside the
hinge (x" flO x l!lii l) is given by

(12)

where (w)" and (8),,- are obtained from eqns (11) and (10). Equations (11) and (12) can be
intqrated with respect to time in order to obtain deftexions.

For a contract.iq hiDp which has previously expanded throuab a particular value of x, the
velocity witbiD dae ... duriq coatradioa .... the same value as durina the expansion. The
velocities outside the hiqe duriq contraction difer from those duriq expansion because of
the discontinuity in aqular velocity at x =x". From Parkes [1) we have that this discontinuity is
given by

where

[

72 f,tc M, dl]1/4
1- x,,:I: --::'=""t,_~

m<XTc - iT,)

(13)

(14)

and the' suftices e and c refer to expansi'on and contraction I'O$pOCtively. Equation (12) is
replaced by

.. 1 . 2
W= (w)" +{(,),,-+~}(x- x")-2 XT(x - x,,) . (15)

For the cue of the caotilever we sba1l be particularly coneerned with a biItI&phe~n
wbK:h wu mentio8ecl -.lY very briely in the earlier paper: the _ which is. created
instantaneoUSly at its maximum extent. and then contraeta. there beiDa no ex,..ioa pbase.
Suppose that this biqe is created at time I =II when dildx is equal to - XTr Let the hinge
extend initially from x =0 to .tit, and let it then contract to x,.(< xllj)' Since x" is a section within
the hinge, the velocity (w)" remains constant during the contraction, as does the angular
velocity (dildx),,- at the value - XTr

Then the initial momentum (at I = II) of the p~ of the cantilever between x =x" and 1 is

m(/- x")(w),, - m t rx rx
XT, dx dx dx

JXII J.rll J.l1I

and the momentum when tile biDae has coatraeted to x" is

Since x" is within the hiqe, where the bending moment is everywhere M, and the shear force
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is zero, we may equate these and obtain
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(16)

The initial angular momentum of the part of the cantilever between x =x" and I, about x", is

and the angular momentum when the hinge has contracted to x" is

Equating the difference of these to the angular impulse imparted by the hinge at x", and
substituting for tiJ from eqn (16), we find

.[72f M, d/JI/4
1- X .1 --:~'i_~

" • m<XT - XT,) .
(17)

For the hinge which is created instantaneously and then contracts, eqns (16) and (17) replace
(13) and (14). If the instantaneously created hinge expands before contraction, eqns (13) and
(14) are used until me hiqe bas repined its orilinalleDlth, and then eqns (16) and (17) are
employed for the further contraction, the time tl being taken IS that of the initial creation. It
may be noted that eqns (16) and (17) can alternatively be obtained by integration of eqns (16)
and (17) of Parkes [1], using appropriate initial conditions.

(18)

3. ZONES OF BEHAVIOUR IN THE CANTILEVER SUBJECTED
TO A SINUSOIDAL HEATING PULSE

We now apply the theory of the previous section to the case of a cantilever subjected to a
variation of thermal curvature such that

XT =(AM,/OJ2mI4)(OJI - sin OJ/) for 0 c; OJt c; 211'}

Xr =211'AM,/OJ2ml4 for OJI .. 211'
and

where A is a dimensionless parameter determining the rapidity of beating, 211'/OJ is the period of
the heating pulse, and M, is taken IS independent of temperature. This temporal variation is
cbaracteristic of neutron heating in a pulsed reactor [21]. Laser beating may tend more to a
skew trianaular form for XT [22], but the behaviour of the cantilever is unlikely to be very
sensitive to pulse shape [8].

From eqn (4) it will be seen that the cantilever r~mains rigid provided that A c; 8..For A> 8
a hinge forms at the root at time I I when

OJ/I =arcsin (8IA). (19)

The angular velocity of the root hinge is given by eqn (8), with 60,. o. Provided that A < 72
(eqn 9) this angular velocity returns to zero at time 12 when

(208)

If the root hinge is to be foUowed by a further rigid phase, 01/2 must be less than 01/1 + 11'. From
(19) and (20&), A must then be less than 4(4 + 1I'~1/2 .. 14.9.

For A < 14.9, the root hinge is foUowed by a rigid cantilever regime until OJ/I + 11', when a
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negative root hinge is formed (M == - Mp ). For A> 14.9, the negative root hinge follows directly
after the positive hinge rotation has ceased. The analysis of the negative root hinge is similar to
that for the positive .root hinge, except for the change from +Mp to - Mp• From eqns (8), (19)
and (20a) the negative hinge rotation ceases at f3, where

wf) == wt2+ 1T'

wt) = wIt + 1T' + (l + cos (Mtl)/sin wt l

wt3 = W/2 +(1- cos c.lt21/sin wt I

(8 < A < 11.0) 1
(11.0 < A < 14.9)
(14.9 < A < 72)t.

(2la)

The boundary at A = 11.0 corresponds to c.lt3 == 211'.
For A > 72, the positive root hinge is followed by an expanding hinge at time 14 when

Wl4 == arcsin (ntA).

The billie extends from x - 0 to x,., where according to Parkes [1]

(22)

(23)

It reaches its maximum size when wI =11'/2. The contraction phase is described by eqn (14).
From this equation and (22), contraction ends (XII =0) at 15 where

(24)

The enauial positive root hinae persists until its anauIar velocity retunlS to zero at time 12,
where we shall show that this is the same time as that given by eqn (2Oa). Prom eqn (8),

. 3·· 3
0-= 80, +SI(XT2 - XTs) - (3Mp/ml )(/2 - '5)

. . 3·· 3
== 804 + tP5 +Sl(XT2 - XTs) - (3Mp/ ml )(/2 - f5)'

Using (8) to give 80• and (13) to give tb5, we. obtain on substituting from (22) and (24) that

(20b)

The solutions of eqns (20) or (24) are clearly of importance in defining the zones of behaviour of
the cantilever. It is worth nodDa that for small values of c.lt l ,

Up to this point, the analysis of the rapidly heated cantilever has displayed modes of
behaviour very similar to those shown for the free beam in Parkes[l). After the cessation of
positive hinae rotation at time 12, however, the behaviour of the cantilever (for A > 72) is very
different from that of the free beam. The essential reason for this di1ferent behaviour is that for
the cantilever, for A> 72, all values of Wt2 exceed 3."./2.

For 72 < A < 83.2, the positive root hinge is fonowed by a negative root hinge which persists
until time t, liven by the last of eqns (21), after which all motion ceases. We thus have a type of
behaviour between A = 72 and 83.2 in which a positive expaadiq aDd contractiaa hiQleis not
fonowed by a corresponding neptive expandin, and contracting biqe: this omission is not
found in the free beam.

For A > 83.2, the positive root hinge is followed by the instantaneous creation of a negative
hiop of~ extent, wtudl subHClUeDtly contractl to a simple root hiqe at time I. The
,overning equation of the motion is (11), and on substituting an initial time of 12 and noting that

tIt is sbown subsequently tbat the condition A < 72 may be relaxed.
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Mp is to be taken as negative we obtain with x~ =0 and by using eqn (19)
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(25)

After time t6 there is a negative root hinge. Since the angular velocity of the root hinge was zero
at time t2, its velocity at time t6 is given simply by Bor, = tbor" which from eqn (16) with x" =0 and
Mp negative leads to

Rotation ceases, from eqn (8), at time t3 when

SUbstituting for Bor, from the previous equation, and using eqns (19) and (25),

(21b)

It will be noted that eqn (21b) is identical with the last of eqns (21a) and that hinge spreading
has no effect on the time t3 at which motion finally ceases.

The zones of behavior of the cantilever defined by eqns (19), (20a, b), (21a, b), (22), (24)
and (25) are plotted as functions of A and wt in Fig. 2. The extent of the hinges is defined by
contours of h(=x,JI) obtained from eqns (23), (14) and (17).

4. ACCELERATIONS, VELOCITIES AND DISPLACEMENTS FOR A .. 200

4.1 Zones 0/ behaviour
In our analysis so far, and in Parkes[lJ, although zones of behaviour have been determined,

no attempt has been made to study the details of the motions. As an example, we now propose
to do this for the cantilever subjected to a sinusoidal heating pulse of the type defined by eqn
(18) and with A = 200 (i.e. a heating rate 25 times greater than that at which plasticity is first
produced). The zones of behaviour are shown at. the uppermost limit of rlg. 2: their
boundaries are at wt! =0.040, wt.. = 0.368, wts =4.225, wt2=5.601, wt6 =6.216 and wt3 =11.19.

4.2 Accelerations
For 0< wt .. 0.040 the cantilever remains rigid and the acceleration is given from eqns (2)

and (18), with A == 200, in the non-dimensional form

(26)

For 0.040 < wt c 0.368 there is a positive root hinge and from eqn (7), with appropriate
substitutions,

(27)

For 0.368 < wt .. ."./2 there is an expandina positive hinge. For sections of the cantilever
outside the hinge (h < xii .. 1) the acceleration is given by eqn (13) of Parkes[lJ as

(28)

where we have made use of the relationship for expansion (eqn 23)

h =1- (72/A sin wt)!/".

The acceleration within the hinge is, of course, zero.
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FiI.2. Zones of behaviour.

The binae reaches its maximum extent, II • 0.2254, at ., ,. 11'/2, and for fr/2 < fAIt "" 4.225 the
hinae contracts. The acceleration outside the hinge can qain be obtained from eqn {l3) of
Parkes[1] as

Wmlz/M,. -100 sin., (7- IIY+{IOOSin "(1-11)- (I ~2h)j} (7- II) +(l ~11)'1.

_100 sin ClJt(l- 11)2 (29)
6

where It is determined by tqn (14) durina contraction.
For 4.22S < OIl "" 5.601 there is a positive root hinae and eqn (27) apia applies.
For 5.601 < ClJt "" 6.216 there is a neptive contractina binp. The equation for the ac·

celeration outside the hioae is similar to (29) except that tenDs derived from M, change sian.
We have

.vmlZ/M, .. -100 sin lilt (7- hY+{100 sin .'(1- h) +(l ~2h)j}(7- II) -(l ! 11)'1.

_1~ sin .t(l- 11)2. (30)

For 6.216 < ., «it 21r there is a nepuve root hinge and we have an equation for the
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acceleration similar to (27), but again with the sign of the Mp term reversed. Thus

9S1

2

wml21Mp .. -100 sin (J)t (7- h) + (75 sin (J)t +3)(x/l). (31)

For 211' < (J)t '" 11.19 the negative root hinge continues, but because of the constant thermal
curvature (eqn 18),

(32)

At (J)t .. 11.19 motion ceases.
The accelerations given by eqns (26)-(32) are plotted in Figs. 3 for x/l" 0.04, 0.08, 0.12, 0.16,

0.20 and 1.00. For each of the sections up to xlI .. 0.20 there is an initial increasing positive
acceleration tbrOUlb the riaid beam and root hinge phases which diminishes to zero again as the
section enters the expanding hinge (the hinge has a maximum extent of h .. 0.2254). There is a
period of zero acceleration while the section lies within the hinge which is terminated by a
sudden discontinuity to a new positive acceleration as the section leaves the contracting hinge.
When contraction ceases at (J)t .. 4.225 there is another discontinuity to a negative acceleration
accompanying a further root hinge phase. This ends at (J)t .. 5.601 with the instantaneous
creation of a negative contracting hinge of extent h .. 0.1303. The accelerations at sections
xII .. 0.04, 0.08 and 0.12, being within the hinge, immediately become zero, but those at
xII .. 0.16 and 0.20, being outside the hinge, change to non-zero values. The accelerations at
xII .. 0.04, 0.08 and 0.12 jump to new negative values as each section leaves the contracting
hinge. Contraction ceases at (J)t .. 6.216 and there are discontinuous chanps in all accelerations
as the negative root hinge phase begins. For (J)t > 211' the accelerations become constant until
motion ceases at (J)t =11.19. The accelerations for x/l =1.00 are typical of those for sections
remote from the hinges, with discontinuities at (J)t =4.225,5.601 and 6.216.
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Fie. 3. Accelerations for A - 200.
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4.3 Velocities
The velocities of the cantilever are conveniently expressed in the non-dimensional form

wm/2Ul/Mp• They can be obtained by numerical integration of Fig. 3 or in some cases by direct
calculation. The velocities at sections x/I:: 0.04.0.08.0.12.0.16 and 0.20 are shown in Fig. 4.
The broken lines indicate the boundaries of the zones of constant velocity when the sections
concerned are within expanding or contracting hinges.

4.4 Displacements
The displacements of the cantilever, expressed non-dimensionally as wmJ2(J)2/M,. can be

obtained by integration of FIg. 4 or in some cases by direct calculation. After motion has ceased
(Ult> 11.19) we have a ftDBl displacement which includes the thermal curvature XT' This
curvature will eventually be relieved by thermal cond~tion. AssumiDa that the attainment of
isothermal conditions is not accompanied by further plutic deforma_ we may subtract a
displacement of -lxrX2. The fiaal displacements before and after the relief ·of tbcrmal curvature
are plotted in Fig. S. It will be noted that after the relief of thermal curvature that part of the
cantilever between xii- 0.2254 and 1 is straiaht. since it has not been subjected to plastic
deformation. whereas the part between xii- 0 and 0.22S4 shows a permanent curvature which
is the result of the positive expandina aad contractina binJe. combined. for xii < 0.1303. with
the effect of the neptive contraetina hiqe. The value of wmI2(J)3/M, at the tip is 402.9 and the
slope of the outer portion 453.3. The root hiqe anale is quite small at 42.3, so that more than
90% of the deformation takes place in the extensive binges.
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Fig. 4. Velocities for A = 200.

S. THE STRONG BEAM

The behaviour of a cantilever subjected to very rapid thermal curvature is complicated and
extensive calculation is needed to predict the final deformation. It seems reasonable to seek for
some simplifyina assumption which may lead to sufficiently accurate predictions with less
labour. One possibility is to restrict deformation to a root binge and to assume that the sectional
properties of the rest of the cantilever are sufticiently strODI so that it does not deform
plastically eVeD tbouah the bendina moment exceeds M,. Under these circumstances there will
be an initial riaid phase foDowed at time t1 by a positive root bin... This will end at time t2 and
will be foDowed by a neptive root binae which will continue until motion ceases at time t3' We
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have already shown in Section 3 that the values of t2 are not affected by binge spreading. The
times tit t2 and t3 will thus still be given by eqns (19), (20b) and (21b).

The rotation of the root hinge can be found by di1ferentiating eqn (7) with respect to x and
putting x =O. For the positive phase we have

and for the negative phase

Adding the two equations and substituting for the thermal curvature and times, we finally obtain
the non-dimensional root hinge rotation ,for A =200 as 8~mI3f1)2/M, =378.1.

After the relief of thermal curvature we thus have a straight cantilever of slope 378.1. This is
shown by the broken line in Fig. S. The tip deftection wmI2f1)2/M, =378.1 is some 6% less than
the true value of 402.9 obtained when plastic deformation spreads over nearly a quarter of the
length of the cantilever.

6. RANGE OF VALIDITY OF THE ANALYSIS
6.1 Longitlldinal inertia effects

Since rapid thermal curvature can only be produced by heating, and not by cooling, it is
impossible for the thermal curvature to be accompanied by zero net loqitudinal strain, as
occurs in most other forms of impulsive .loading. It follows that the cantilever subjected to
rapid thermal curvature will tend to expand, and longitudinal inertia forces will be induced. For
neutron or radiation heating the thermal strain IT will commonly vary exponentially with the
depth, so that for a rectangular section of depth d we ma~ put

(33)
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where K is a time-dependent function, Ais a constant and y is a co-ordinate measured from the
centre of the section towards the heat source. We then have

12 f(1/2)d 6K
XT =;p ETY dy =;p,(,\ cosh A- sinh A)

-(112)d "

1 f(1l2ld K
ET., =- ET dy = -sinhA

d -1I/2Id A

where the suffices av and max stand for averaae and maximum values. Thus

(34)

(35)

For a beam which absorbs most of the incident radiation, which is a prerequisite for bending
phenomena to occur, A is unlikely to be less than 0.5. There is an upper limit set by eqn (35) if
ET.. is to produce sipificaat IonaitudiDal forces and the outer surface is not to melt: this upper
limit wiD vary with the material but may be at about ,\ =20.

We shall assume that up to the time of yieIdiaa we may use the analysis of Parkes and
Carter[2l) where the I""li"Jdinal force P in a uniform rod held at one end and subjected to a
themal auaiD fT.. is pv.n by F&r..bd where B is the y OUDI modulus, b is the breadth of the
section and P'is a stress f~tor dependent on the parameter B ,. (0JI/2.".KP/B>112 where p is the
density of the material.

Putting the fuU plastic force as P, =tT,bd where tT, is the yield stress we have

P FEET••-=--P, tT,

Yieklina of the riPd-piastic cantilever in bendina first occurs at the root (see Fia. 2) at a time
not later than lilt =1r/2. Substituting in the above equation from eqn (34), from the first of eqns
(18) with fJJt =1r/2 and putting At,,. tT,bd2/4 and m = pbd we have on utilising the equation for
B,

(36)

where the inequality occurs because in tak.ing the first of eqns (18) with fJJt =1r/2 we have
overestimated the value of XT'

Since yieldins first occurs at the root we need the value of [Fl,._o- This is given from eqn
(23) of Parkes and Carter[21l as

This is the PNk value of the stress factor and it wiD Dot necessarily co-incide in time with the
onset of beDdinI yieI4ina.

It is a cb8racteristic of riPd-plastic theory that we assume B to be very Iarae. It follows that
B will be small. For small values of B, the above equation for [F],.-o can be represented with
suJicient accuracy by tak.ing the first term only and by iporing 16B2 compared with unity. We
shall take what will generally be a high value for the stress factor by writing the term sin (1r/4B)
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as unity. We then have

(37)

Substituting eqn (37) in (36) we obtain

(38)

From this point onwards it will be convenient if we retain the length I of the cantilever only .
in the length-to-depth ratio

f.L =lid (39)

(40)and

and eliininate it from the other non-dimensional parameters. Instead of A and B we shall
therefore use

Equation (38) then becomes

(41)

Remembering that the yield equation is (p/pp )2 +(M/Mp )'" I, the fractional change in the
yield moment due to the presence of the lonaitudinal force is less than the square of the r.h.s. of
inequality (41). This expression is not very sensitive to changes in ,\ and so we shall take ,\ as
large and thus {coth,\ - O/'\)} equal to unity. We then have

(42)

An alternative way in which lonaitudinal forces might contribute to errors in Mp would be if
deftexions became sufticiently large for the product of end thrust and deftexion tQ form a
significant fraction of the full plastic moment. Up to first yield, the thermal deftexion XTx2/2
represents the true deftexion. After yielding, it substantially overestimates the deftexions. The
lonaitudinal force at the free end of the cantilever must be zero, but from Parkes and Carter [21]
it seems that a constant force may persist from the root up to about x/I =0.8. Multiplying the
lonaitudinal force by the de8exion, we obtain a contribution to the bending moment of
F&T

1
.bdXT(O.8l)2/2. Substituting from eqn (34) for ET

IV
and from (37) for F, and choosing the

value of XT from the first of eqns (8) with wt = '11'/2, we find on makina the substitutions of
eqns (39) and (40) that the contribution to the bending moment can be expressed for ,\ large as

Fractional error in Mp < 7.23 x 10-'1(20 3f.L'(u,JE) (43)

where the inequality arises from the overestimates of deftexion and of stress factor. It win be
noted that inequality (43) retains an additional non-dimensional parameter (u,JE).

6.2 Elastic elects
As with all riaid-plastic analysis, the work in the present paper can omy be applied to real

materials provided that the elastic deformations are small compared with those due to plastic
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flow. In the present case this means that the maximum possible elastic strain O'y/£ must be
small compared with the maximum thermal strain ET.... which is also a measure of the final
plastic strain. We thus have

Fractional error in final plastic strain = O'/&r....

or, using (34), (35) and first of eqns (40),

{( I)}cothA --
Fractional error in final plastic strain =48'lT A A ~,\ •/( e cosec

The term in ,\ has a maximum value at A=1.35 of 0.139, whence

Fractional error in final plastic strain < 21/ /(.

(44)

(45)

It may be noted that for 0.5 < ,\ < 4, the ratio of the maximum possible elastic curvature to the
maximum thermal curvature is about tbree times the fractional error iIi the final plastic strain.

6.3 Limitations
The zones of values of 0 and /( for wbich the errors in M, and in the final plastic strain are

less than 10% or 5% are plotted in Fig. 6 for p. =10, 50 and 250 and E{uy =1000. It may be
noted that inequality (42) is of sipificance for p. =10 only. The important inequalities are (43)
and (45).

The author bas been subjecting small shim steel specimens, 10 mm long by 0.06 mm deep to
laser heating of about JOOp.s duration. Allowance bas to be made for conduction in these thin
specimens and as a result the effective value of ,\ is about!. With a front face temperature of
10000C, the non-dimensional parameters are p. =167,0 =5 x 10-' and /( =350, so that the worst

Fli. 6. Values of J', 0 and /( for wbic:h errors de6ned by "IDS (42), (43) and (45) are less than 10% or less
than 5%. BIT, • 1000.
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error is in the hypothesis of rigidity: in fact the maximum elastic strain is about 5% of the
maximum thermal strain. Longitudinal inertia effects are quite unimportant.
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