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Abstract—The concept of the expanding and contracting hinge produced by rapid thermal curvature is
applied to the detailed analysis of a cantilever. In addition to a general study of the modes of deformation,
the accelerations velocities and displacements are determined for a specific case. Although for the
example chosen, less than 10% of the final plastic curvature occurs in the root hinge, a greatly simplified
“strong beam™ analysis which constrains all plastic deformation to the root hinge gives a tip deflection only
6% less than the original value. The paper includes a discussion of the conditions which must be satisfied
such that longitudinal inertia effects and elastic deflexions do not invalidate the analysis when it is applied
to real materials.

NOTATION

parameter determining the rapidity of heating

suffix denoting average value

(edl2e Xl E)'?

breadth of cantilever

depth of cantilever

Young's modulus

suffices denoting expansion and contraction phases of hinge
stress factor

xull

suffix denoting boundary of expanding or contracting hinge
suffix denoting section just outside hinge

suffix denoting section just within hinge

suffix denoting value at beginning of current regime of behaviour
time dependent function in equation for thermal strain
length of cantilever

bending moment

suffix denoting maximum vaiue

full plastic moment

longitudinal force

full plastic force

mass per unit length

shear force
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time
t)...ts times defining boundaries between zones of behaviour
t, time at which section x enters hinge
w  deflexion
w, deflection at beginning of current regime of behaviour due to some previous history of plastic deformation
x coordinate along cantilever, measured from the root
y coordinate of depth in cantilever, measured from mid-height
B {(1-yX33-y}"?
y T2Myimyrt*
€r thermal strain
6 dwldx
6, valueof fatx=0
x  AlB%u?
A constant in equation for thermal strain
n lid
0 Blu
p density
o, Yyield stress
¢ discontinuity in angular velocg’}; ):n bR

Xr thermal curvature = (12/4’)f . dy
-
@ parameter defining period of heating pulse (= 2xfw)

1. INTRODUCTION
In a previous paper(1] it was shown that in any rigid-plastic beam subjected to sufficiently rapid
thermal curvature there would develop expanding and contracting plastic hinges occupying
finite lengths of the beam. A general theory was given which demonstrated the different
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physical characteristics of the expansion phase, during which angular velocity is a continuous
function along the beam, and the contraction phase, when angular velocity is discontinuous.
The purpose of this previous paper was partly to demonstrate the necessity for the existence of
non-discrete hinges, and partly to explore the possible definition of thermal curvature for an
inelastic beam. A brief application of the theory was given to show the zones of behaviour
which can occur in a free beam, but no attempt was made to analyse the deformations.

The present paper uses the general ideas of the earlier work and applies them to a detailed
study of the cantilever. The cantilever was chosen because it is the structure which has
attracted greatest attention in the literature of dymamic plasticity. The reason for this is
probably that it is a well-defined system for experimental work. In any other type of beam (with
the exception of the free beam, which introduces experimental difficuities) there is always some
possibility of axial restraint and thus interaction between bending and end-load plasticity.

The first application of dynamic plastic theory to an important practical problem was the
design in 1940 of the “Morrison” table shelter[2). This shelter was intended to resist the
collapse of part of a building. The striking mass was large and its velocity low, so that the
plastic hinges formed were static. The earliest work on dynamic plasticity which implies hinge
movement is that of Bohnenblust on the infinitely long beam subjected to a transverse impact
of constant velocity. This work was carried out in a defence context in 1943 but was not
published until seven years later[3]. Bohnenblust’s analysis could incorporate any form of
moment-curvature relationship and good agreement was obtained with experiments on mild
steel and annealed copper. A rigid-plastic analysis of the long beam under transverse impact
was given by Conroy[4]. The encastré beam of finite length was discussed by Parkes(5, 6]: these
papers include experimental work on steel, brass and duralumin.- specimens designed to
elucidate strain-rate effects.

The next type of structure to be considered in the development of rigid-plastic theory seems
to have been the free beam. Lee and Symonds{7] and Symends(8] discussed a free beam
subjected to a central transverse force which varied with time in a specified manner-triangular,
rectangular or half sine wave forms were employed. Symonds and Leth{9] dealt with the free
beam in which the central impact was of constant velecity.

The first paper discussing a cantilever struck by a moving mass is that of Parkes[10]:
experiments were carried out on mild steel cantilevers using both very heavy and very light
strikers, and good agreement was obtained with theoretical predictions provided rate-of-strain
effects were taken into account. Mentel[11] .carried out experiments on cantilevers with
attached tip masses, but very little of the deformation in his tests was attributable to travelling
hinges. Bodner and Symonds(12] performed a series of tests on steel and aluminium alloy
cantilevers to assess the importance of the factors which simple rigid-plastic theory ignores:
elastic vibrations, shear deformation, extensional deformation, geometry changes, strain-rate
and strain hardening effects. Bodner and Speirs{13] tested aluminium cantilevers whose tips
were given an impulse by an explosive capsule. The tests, which were carried out at elevated
temperatures, were compared with the original theoretical work of Parkes{10] and with later
analyses by Bodner, Symonds and Ting which incorporated strain rate effects in the governing
equations. As might be expected they found that the significance of strain rate increased with
temperature.

Ting[14] gave an analysis for a cantilever made from a material having strain rate
sensitivity. He assumed that strain rate is proportional to a power function of the stress in
excess of the static yield stress. Comparisons were made with the experimental results from
Bodner and Symonds(12). He later[15] developed a large displacement theory for the cantilever
and compared his results with the experiments of Parkes[10].

Hall, Al-Hassani and Johnson[16] carried out a very extensive experimental programme on
the impulse loading of cantilevers. The methods of loading, all of which were stated to
correspond to Parkes’ “light” strikers, included magneto-motive loading, necessitating high
electrical conductivity, and thus aluminium or copper specimens, comtact explosives and
bullets. Detailed comparisons were made with Parkes[10] theory in all cases, including his
expression for the length of the short straight portion near the tip in the case of bullet loading.

Recent developments in the study of impulsively loaded cantilevers have included work by
Hashmi, Al-Hassani and Johnson{17} using lumped parameter models to investigate very large
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deformations: comparison was made with experiments. A quite different approach has been
that of Martin (18] who derived theorems providing a lower bound on the response time and an
upper bound on the deflection for an impulsively loaded structure: he found that on comparing
his work with Parkes[10] the response time was accurate but the deflection bound became
progressively less accurate for the lighter strikers. The idea of bounds has been developed
further by Symonds and Chan{19]. Fibre-reinforced rigid-plastic cantilevers have been studied
by Jones[20], who compared his resuits with Parkes[10] and Bodner and Symonds[12].

There is an important distinction to be drawn between all of the work on cantilevers
described above, and that in the present paper. When a beam is subjected to plasticity as-the
result of rapid thermal curvature, this can only be produced by heating, since the processes of
cooling cannot take place sufficiently quickly. As a result, rapid thermal curvature is always
accompanied by longitudinal inertia force in the beam. This longitudinal force may affect the
analysis in two ways: it may reduce the value of the yield moment; and if the deflexions are
sufficiently large it may contribute significantly to the bending moment. In Sections 2-5 of the
paper we shall develop the analysis ignoring longitudinal inertia effects. In Section 6 we shall
consider what conditions must be satisfied such that these effects are negligible, and in the same
section we shall investigate the validity of the usual assumption of dynamic plasticity theory,
that elastic deflexions may be ignored.

The present paper begins with a study of the modes of behaviour of the cantilever subjected
to rapid thermal curvature. The analysis draws substantially on the work on the free beam in
Parkes[1], but more detailed consideration is given to the case of the instantaneously created
extensive hinge, which is of greater significance for the cantilever than for the free beam. The
zones of behaviour as functions of the rapidity of heating and of time are next determined for a
sinusoidal heating pulse, and then a detasiled analysis of the accelerations, velocities and
displacements of the cantilever is given for a specific case. The development of expanding and
contracting hinges and of instantaneously created extensive hinges is clearly shown. For the
particular case chosen, the final plastic curvature occurs over nearly one quarter of the length
of the cantilever, less than 10% of it being in the root hinge.

The full analysis of the cantilever subjected to rapid thermal curvature is complicated, and
extensive numerical calculations are needed to determine the final deformations. It seems
natural therefore to look for simplifying assumptions which will reduce the labour involved
without introducing unacceptable errors. One such assumption which has been investigated in
the present paper is the concept of the strong beam, in which all deformation takes place in the
root hinge, the rest of the cantilever remaining rigid even though the bending moment exceeds
the fully plastic moment. For the specific example, this approach led to a tip deflection which
was some 6% less than the value given by the full analysis.

The paper ends with discussions of longitudinal inertia forces and elastic deformations, and
the conditions which must be satisfied such that their effects do not invalidate the analysis.

2. GENERAL ANALYSIS
2.1 The modes of behaviour

We consider a rigid-plastic beam of uniform section subjected to a thermal curvature xr
which varies with time but not with position. The assumptions relating to the existence and
determination of yr are discussed in the appendix to Parkes[1], and it is defined in the
Notation. The beam section and the manner of support are supposed to be such that
longitudinal inertia effects are unimportant compared with bending phenomena: the conditions
under which this will be true are discussed in detail in Section 6. Then the thermal curvature
will produce a shear force S, a bending moment M and a deflexion w at section x of the beam,
where x is a co-ordinate measured from some fixed position. The sign conventions for yr, S, M,
w and x are shown in Fig. 1. The beam is supposed to have a mass per unit length m and a full
plastic moment M,, which may vary with temperature.

Then provided yr is sufficiently small there will be a rigid phase of behaviour in which no
plastic hinges develop. For higher values of yr a discrete plastic hinge may be formed, and for
still larger values there may be expanding and contracting hinges occupying varying lengths of
the beam.

We suppose that the moving boundary of an expanding or contracting hinge occurs at x = x,
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Fig. 1. Element of cantilever, showing sign conventions.

and that the hinge lies on the side x < x,, so that for x > x, the beam is rigid. It is shown in
Parkes[1] that within an expanding or contracting hinge the velocity w and thus the angular
velocity §(= dw/dx) at a given section is constant. We denote the section just within the hinge
by the suffix &~ and that just outside it by A*. At the boundary the siope of the beam is
continuous but this is not necessarily true of the angular velocity. In fact it is shown in
Parkes[1] that

(@~ (O)r-= 6 M

where $ is zero during expansion but not during contraction. We now apply these ideas to the
particular case of a cantilever of length | and in which x is measured from the root.

2.2 The rigid cantilever
For a cantilever in which the bending moment is everywhere less than M,, we have

w=—dxrx®+ wy; 2

where w,; is the deflexion at the beginning of the regime due to some previous history of plastic
deformation. By integration of the inertia loading we obtain

M= i%mir(x‘ ~4Px+ 314, 3)

The bending moment is a maximum at the root (x = 0) and a plastic hinge will form there uniess

~8M,/ml* < xr <8M,/ml* @

2.3 The cantilever with a hinge at the root
If the condition of eqn (4) is violated, a plastic hinge will form at the root of the cantilever,
producing a root slope due to the current regime of behaviour of ;. We then have

i
= -5X1x2+ Box + Wy

S=m {%)zr(f - B —%50(::’— l’)}
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and
M=m {2—14 (&~ 4P5) = L’ ~ 31=x)} +M,

where we have made use of the conditions S=0atx=/and M =M, at x=0.
The further condition M =0 at x =/ leads to

- 3. 3M
v=gxrl —F
and thus
§ =T - - -89 -3 - ) (5)
and
M= %Ix(l—x)z(l +2x)+-1‘2—f§(1—x)’(21 +X). ®)

Integrating the expression for 6, and substituting back into that for the deflexion

1 t pt 3 . .
w=—tyt- [—3-; I f M, dt de +21xr, ~ xr) + {éum — o)t - zi)]x w D)
2 ), J, g 8

where the suffix i denotes the beginning of the regime and both 6, and w,; are due to some
previous plastic behaviour,

Differentiating (7) with respect to x and ¢ and putting x = 0, we obtain the angular velocity
at the root as

6, = 8, +§l(x1--x1-‘)—mf“ M, dt. 8)

It will be noted that the shear force (eqn 5) is zero when x =1/ and when P+ix-8x=
yi(l +x) where y=72M,/mxr* The quadratic equation leads to x//=%(1-y+pB) where
B =1{(1- ¥)33 - y)}'. Substituting in eqn (5) we then find

M,
M= E—é—y—{ﬁ +66y—y:+(15+ v)BY1S+ vy~ B)>.

This is a maximum value of the bending moment and we have to compare it with = M,. For
M=+M, y=1and x/l =0. For M = - M, y = —0.286 and x/I = 0.489 with yr = —252 M,/ml*.
Plasticity will occur other than at the root hinge unless

-252M,/ml* < xr < T2M,/ml*. )
The corresponding conditions when M =~ M, at x =0 are
-T2 M,Iml < xr <252M,/ml*.
2.4 The cantilever with an extensive hinge
The general theory of expanding and contracting hinges was developed in Parkes[1), and the

analysis of Section 2.3 of that paper can be adopted in foto. In particular it was shown that
during the expansion phase of a hinge extending from x =0 to x,,

(é)h_ - (%{A)IM[X.TX-T—(IIO_% f (if)sl‘ dt] :‘+ (é)hp (10)

SS Vol 4, No. 11—E
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Since 6 at a given value of x within the hinge is constant, eqn (10) gives the distribution of
angular velocity within the hinge provided that ¢ is replaced by t,, the time at which section x
entered the hinge, and the final term is replaced by 6, the angular velocity at x at the beginning
of the regime (t =¢,).

Equation (10) can be integrated to give the velocity within the expanding hinge (0 < x < x,)
as

14 ,rx ty x

W= (—73@1) f [)2,,\3;“’"—3 f (,\'?r)”‘dt] + f 6; dx. (1
m [} 3 4 [}

Since, in the expansion phase, the angular velocity is continuous at x = x,, the velocity outside the

hinge (x, = x < [) is given by

= (0 + Onelx = ) = 3 ek = 3. (12)

where (W), and (6)x- are obtained from eqns (11) and (10). Equations (11) and (12) can be
integrated with respect to time in order to obtain deflexions.

For a contracting hinge which has previously expanded through a particular value of x, the
velocity within the hinge during contraction has the same value as during the expansion. The
velocities outside the hinge during contraction differ from those during expansion because of
the discontinuity in angular velocity at x = x,. From Parkes[1] we have that this discontinuity is
given by

é= %(X.Tc = xr = x) (13)
where
¢, 1/4
7 ﬁ M, dt
l-xpy=| — 14)
. m(Xt, = Xr,) (

and the suffices ¢ and c refer to expansion and contraction respectively. Equation (12) is
replaced by

= (90 + @+ BHx = 50 = 3z = 50 (1s)

For the case of the cantilever we shail be particularly concerned with a hinge phenomenon
which was mentioned only very briefly in the earlier paper: the hinge which is.created
instantaneously at its maximum extent, and then contracts, there being no expaasion phase.
Suppose that this hinge is created at time ¢ =, when dé/dx is equal to —xr. Let the hinge
extend initially from x =0 to x;, and let it then contract to x,(< x,,). Since x, is a section within
the hinge, }he velocity (W), remains constant during the contraction, as does the angular
velocity (dé/dx),- at the value — xr.

Then the initial momentum (at ¢ = ;) of the part of the cantilever between x = x, and [ is

] X rx
m(l-—x,.)(W),,—mffI,\;r‘dxdxdx
Xy T Xy S Xy
and the momentum when the hinge has contracted to x, is
1 X rx
m(l-x,,xw),.—mff xr dx dx dx +im(l - x,)*é.
xn Jxp Ixy

Since x, is within the hinge, where the bending moment is everywhere M, and the shear force
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is zero, we may equate these and obtain
. 1. .
¢ ='3'(Xr—Xr,-)(l—xu)- (16)
The initial angular momentum of the part of the cantilever between x = x, and /, about x,, is
1 . i x px
Am(I = XY= m f x —x,.)f J' Xr, dx dx dx
X Xy S Xy
and the angular momentum when the hinge has contracted to x, is
1 2 1 x rx 1 3
im(l-x,.) (Wh—=m | (x—x,) dexdxdx+§m(l-x,.) .
Xp Xy S Xy

Equating the difference of these to the angular impuise imparted by the hinge at x,, and
substituting for ¢ from eqn (16), we find

t 1/4
.[72 [ M,,dtjl
l-x =) —feee— [ | (17
* m(xr — xt,)

For the hinge which is created instantaneously and then contracts, eqns (16) and (17) replace
(13) and (14). If the instantaneously created hinge expands before contraction, eqns (13) and
(14) are used until the hinge has regained its original length, and then eqns (16) and (17) are
employed for the further contraction, the time f; being taken as that of the initial creation. It
may be noted that eqns (16) and (17) can alternatively be obtained by integration of egns (16)
and (17) of Parkes[1], using appropriate initial conditions.

3. ZONES OF BEHAVIOUR IN THE CANTILEVER SUBJECTED
TO A SINUSOIDAL HEATING PULSE

We now apply the theory of the previous section to the case of a cantilever subjected to a
variation of thermal curvature such that

xr = (AM,j0’ml*}wt - sinwt) for 0<wt<27
and (18)
xr =2mAM,jo’ml* for ot=2m

where A is a dimensionless parameter determining the rapidity of heating, 27/ is the period of
the heating pulse, and M, is taken as independent of temperature. This temporal variation is
characteristic of neutron heating in a pulsed reactor[21]. Laser heating may tend more to a
skew triangular form for yr[22], but the behaviour of the cantilever is unlikely to be very
sensitive to pulse shape|[8].

From eqn (4) it will be seen that the cantilever remains rigid provided that A <8. For A >8
a hinge forms at the root at time ¢, when

wt, = arcsin (8/A). (19)

The angular velocity of the root hinge is given by eqn (8), with 6, = 0. Provided that A <72
(eqn 9) this angular velocity returns to zero at time t, when

€Oos wt; ~ c0S wiz = (wl, — wty) sin wt;. (20a)
If the root hinge is to be followed by a further rigid phase, wf, must be less than wt, + . From

(19) and (20a), A must then be less than 4(4 + 7%)'? = 14.9.
For A <149, the root hinge is followed by a rigid cantilever regime until of;+ 7, when a
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negative root hinge is formed (M = ~ M,). For A > 14.9, the negative root hinge follows directly
after the positive hinge rotation has ceased. The analysis of the negative root hinge is similar to
that for the positive root hinge, except for the change from + M, to — M,. From eqns (8), (19)
and (20a) the negative hinge rotation ceases at f;, where

wl3=owl;+m B<A<I110)
oty = wty + 7+ (1 + cos wty)/sin wt; (11.0<A<149) (21a)
wt3 = wty+ (1 — cos wtr)/sin wl, (149 < A<TD)T.

The boundary at A = 11.0 corresponds to wt; = 2.
For A > 72, the positive root hinge is followed by an expanding hinge at time ¢, when

wt, = arcsin (72/A). (22)
The hinge extends from x =0 to x,, where according to Parkes[1]
Xy = [ = (T2M,Imy7)". 23

It reaches its maximum size when wt = #/2. The contraction phase is described by eqn (14).
From this equation and (22), contraction ends (x, = 0) at ¢; where

COS wtq— COS wts = (wis — wty) SN wly, (24)

The ensuing positive root hinge persists until its angular velocity returas to zero at time t,,
where we shall show that this is the same time as that given by eqn (20a). From eqn (8),

0= 6+ 310ir,~ 1) ~ CMpImPYt2~ 1)
= 6, + ¢s,+-§-z(x'r,—ir,)-(m,,/mz’)(:,- t5).

Using (8) to give §,, and (13) to give és, we obtain on substituting from (22) and (24) that
COS wt, — cOs wty = (wty— wiy) Sin wil;. (20b)

The solutions of eqns (20) or (24) are clearly of importance in defining the zones of behaviour of
the caatilever. It is worth noting that for small values of wt;,

oty =21 ~ {4zt — 47" wt))? + Gr* - w2

Up to this point, the analysis of the rapidly heated cantilever has displayed modes of
behaviour very similar to those shown for the free beam in Parkes[1]. After the cessation of
positive hinge rotation at time #,, however, the behaviour of the cantilever (for A >72) is very
different from that of the free beam. The essential reason for this different behaviour is that for
the cantilever, for A > 72, all values of wt, exceed 37/2.

For 72 < A < 83.2, the positive root hinge is followed by a negative root hinge which persists
until time £, given by the last of eqns (21), after which all motion ceases. We thus have a type of
behaviour between A =72 and 83.2 in which a positive expanding and contracting hinge is not
followed by a corresponding negative expanding and contracting hinge: this omission is not
found in the free beam.

For A > 83.2, the positive root hinge is followed by the instantaneous creation of a negative
hinge of finite extent, which subsequently contracts to a simple root hipge at time ¢. The
governing equation of the motion is (17), and on substituting an initial time of ¢, and noting that

1t is shown subsequently that the condition A <72 may be relaxed.
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M, is to be taken as negative we obtain with x, =0 and by using eqn (19)

€Os wtz ~ oS wlg = (wt — wlg) sin wt}. (25)

After time t, there is a negative root hinge. Since the angular velocity of the root hinge was zero
at time #,, its velocity at time ¢ is given simply by 6, = é.,, which from eqn (16) with x, =0 and
M, negative leads to

0o, = %(cos oty - cos wte) AM,/wml®.
Rotation ceases, from eqn (8), at time ¢; when
0= 6, + -:—(cos wte— 1AM, Joml®) + 3wt; — wted M,loml®).

Substituting for ,, from the previous equation, and using eqns (19) and (25),
wl3 = oty + (1 — cos wts)/sin wt;. (21b)

It will be noted that eqn (21b) is identical with the last of eqns (21a) and that hinge spreading
has no effect on the time ¢; at which motion finally ceases.

The zones of behavior of the cantilever defined by eqns (19), (20a, b), (21a, b), (22), (24)
and (25) are plotted as functions of A and wt in Fig. 2. The extent of the hinges is defined by
contours of h(= x,/l) obtained from eqns (23), (14) and (17).

4. ACCELERATIONS, VELOCITIES AND DISPLACEMENTS FOR A =200

4.1 Zones of behaviour

In our analysis so far, and in Parkes[1], although zones of behaviour have been determined,
no attempt has been made to study the details of the motions. As an example, we now propose
to do this for the cantilever subjected to a sinusoidal heating pulse of the type defined by eqn
(18) and with A =200 (i.e. a heating rate 25 times greater than that at which plasticity is first
produced). The zones of behaviour are shown at the uppermost limit of Fig. 2: their
boundaries are at wt, = 0.040, wit,= 0.368, wts=4.225, wt, = 5.601, wtc=6.216 and wt;=11.19.

4.2 Accelerations
For 0 < wt £0.040 the cantilever remains rigid and the acceleration is given from eqns (2)
and (18), with A =200, in the non-dimensional form

wmi*[ M, = - 100 sin wt(x*/1%). (26)

For 0.040 < wt <0.368 there is a positive root hinge and from eqn (7), with appropriate
substitutions,

wmi*|M, = —100 sin wt(x?/I?) + (75 sin ot ~ 3)(x/]). @n

For 0.368 < wt < #/2 there is an expanding positive hinge. For sections of the cantilever
outside the hinge (h < x/l € 1) the acceleration is given by eqn (13) of Parkes{1] as

womi* M, = —100 sin wf (5I-—h)2+-(—l-_274-5?(£;-—h) (28)

where we have made use of the relationship for expansion (eqn 23)
h=1-(72/A sin wt)'“,

The acceleration within the hinge is, of course, zero.
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Fig. 2. Zones of behaviour.

The hinge reaches its maximum extent, & =0.2254, at ot = #/2, and for »/2 < wt < 4.225 the
hinge contracts. The acceleration outside the hinge can again be obtained from eqn (13) of
Parkes{1] as

i o (x ) . 12_\(x 6
wml’/M,s—lOOsmwt(-[-—h) +{10()smm¢(l—-h)-(l__7),} (T‘.k)-‘-(i“h)
---‘2°ssmu—mz (29

where h is determined by eqn (14) during contraction.

For 4.225 < wt % 5.601 there is a positive root hinge and eqn (27) again applies.

For 5.601 < wt =6.216 there is a negative contracting hinge. The equation for the ac-
celeration outside the hinge is similar to (29) except that terms derived from M, change sign.
We have

wmi*/ M, = —100 sin wf %—h)zﬁ-{l(x)sin wt(1 -h)+(1—1253}(¥,“‘")‘(1__6'§?

—~-'~29 sinwt(1-hY. (30)

For 6216 <wt=2x there is a negative root hinge and we have an equation for the
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acceleration similar to (27), but again with the sign of the M, term reversed. Thus

2
wml?| M, = —100 sin G— h) +(75 sin wt + 3)(x/1). @31)

For 27 < ot €11.19 the negative root hinge continues, but becaunse of the constant thermal
curvature (eqn 18),

wml2 M, = 3(x/1). 32

At of = 11.19 motion ceases.

The accelerations given by eqns (26)-(32) are plotted in Figs. 3 for x/l = 0.04, 0.08, 0.12, 0.16,
0.20 and 1.00. For each of the sections up to x/l = 0.20 there is an initial increasing positive
acceleration through the rigid beam and root hinge phases which diminishes to zero again as the
section enters the expanding hinge (the hinge has a maximum extent of h = 0.2254). There is a
period of zero acceleration while the section lies within the hinge which is terminated by a
sudden discontinuity to a new positive acceleration as the section leaves the contracting hinge.
When contraction ceases at wt = 4.225 there is another discontinuity to a negative acceleration
accompanying a further root hinge phase. This ends at wf=5.601 with the instantaneous
creation of a negative contracting hinge of extent i =0.1303. The accelerations at sections
x/l=0.04, 0.08 and 0.12, being within the hinge, immediately become zero, but those at
x/l =0.16 and 0.20, being outside the hinge, change to non-zero values. The accelerations at
x/1 =0.04, 0.08 and .0.12 jump to new negative values as each section leaves the contracting
hinge. Contraction ceases at wt = 6.216 and there are discontinuous changes in all accelerations
as the negative root hinge phase begins. For wt > 27 the accelerations become constant until
motion ceases at wt = 11.19. The accelerations for x// = 1.00 are typical of those for sections
remote from the hinges, with discontinuities at w? = 4.225, 5.601 and 6.216.

2s T T T T T T T T T T T

xpandl contracting positive negative
~25 Lﬂ. positive hinge h':;.' ‘ root hinge .
positive root controcting negative
hinge hinge
1 -l 1 [l ] i | 1 1

Fig. 3. Accelerations for A = 200,
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4.3 Velocities

The velocities of the cantilever are conveniently expressed in the non-dimensional form
wmi*w/M,. They can be obtained by numerical integration of Fig. 3 or in some cases by direct
calculation. The velocities at sections x/I = 0.04, 0.08, 0.12, 0.16 and 0.20 are shown in Fig. 4.
The broken lines indicate the boundaries of the zones of constant velocity when the sections
concerned are within expanding or contracting hinges.

4.4 Displacements

The displacements of the cantilever, expressed non-dimensionally as wmi*w?/M,, can be
obtained by integration of Fig. 4 or in some cases by direct calculation. After motion has ceased
(wt>11.19) we have a final displacement which includes the thermal curvature yr. This
curvature will eventually be relieved by thermal conduction. Assuming that the attainment of
isothermal conditions is not accompanied by further plastic deformation we may subtract a
displacement of —$xrx”. The final displacements before and after the relief of thermal curvature
are plotted in Fig. 5. It will be noted that after the relief of thermal curvature that part of the
cantilever between x/l = 0.2254 and 1 is straight, since it has not been subjected to plastic
deformation, whereas the part between x// =0 and 0.2254 shows a permanent curvature which
is the result of the positive expanding and contracting hinge, combined, for x// <0.1303, with
the effect of the negative contracting hinge. The value of wmi’w’/M, at the tip is 402.9 and the
slope of the outer portion 453.3. The root hinge angle is quite small at 42.3, so that more than
90% of the deformation takes place in the extensive hinges.

Fig. 4, Velocities for A = 200.

5. THE STRONG BEAM

The behaviour of a cantilever subjected to very rapid thermal curvature is complicated and
extensive calculation is needed to predict the final deformation. It seems reasonable to seek for
some simplifying assumption which may lead to sufficiently accurate predictions with less
labour. One possibility is to restrict deformation to a root hinge and to assume that the sectional
properties of the rest of the cantilever are sufficiently strong so that it does not deform
plastically even though the bending moment exceeds M,. Under these circumstances there will
be an initial rigid phase followed at time ¢, by a positive root hinge. This will end at time 1, and
will be followed by a negative root hinge which will continue until motion ceases at time ¢;. We
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400}
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thermal curvoture
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Fig. 5. Final displacements for A = 200.

have already shown in Section 3 that the values of t, are not affected by hinge spreading. The
times ¢,, ; and ¢, will thus still be given by eqns (19), (20b) and (21b).

The rotation of the root hinge can be found by differentiating eqn (7) with respect to x and
putting x = 0. For the positive phase we have

ool w

1xr, = xr, = xr(t2— 1) -%%ﬁ(h' ty

0o, =
and for the negative phase
3 . IM
00, = 00, = ’S'I{XT; = X1~ Xn{ts— t)} + 3 ';nb-{f;(t; -t

Adding the two equations and substituting for the thermal curvature and times, we finally obtain
the non-dimensional root hinge rotation for A = 200 as 6,,ml’w?/M, = 378.1.

After the relief of thermal curvature we thus have a straight cantilever of slope 378.1. This is
shown by the broken line in Fig. 5. The tip deflection wml*w?/ M, = 378.1 is some 6% less than
the true value of 402.9 obtained when plastic deformation spreads over nearly a quarter of the
length of the cantilever.

6. RANGE OF VALIDITY OF THE ANALYSIS

6.1 Longitudinal inertia effects

Since rapid thermal curvature can only be produced by heating, and not by cooling, it is
impossible for the thermal curvature to be accompanied by zero net longitudinal strain, as
occurs in most other forms of impulsive .loading. It follows that the cantilever subjected to
rapid thermal curvature will tend to expand, and longitudinal inertia forces will be induced. For
neutron or radiation heating the thermal strain er will commonly vary exponentially with the
depth, so that for a rectangular section of depth d we may put

er = K ¢ 33)
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where K is a time-dependent function, A is a constant and y is a co-ordinate measured from the
centre of the section towards the heat source. We then have

(/2
XT:i%f e-,-ydy=3—fz(,\ cosh A —sinh A)
—-amd

(1/2d

=7 €r dy=£f—sinh)\

—(1/2)d
€T = K e"

where the suffices av and max stand for average and maximum values. Thus
1
xd = 6(coth A —-A-) €r, (34)

er,, = Ae’ cosech Aer,,. (35)

For a beam which absorbs most of the incident radiation, which is a prerequisite for bending
phenomena to occur, A is unlikely to be less than 0.5. There is an upper limit set by eqn (35) if
er,, is to produce significant longitudinal forces and the outer surface is not to melt: this upper
limit will vary with the material but may be at about A = 20.

We shall assume that up to the time of yielding we may use the analysis of Parkes and
Carter[21] where the longitudinal force P in a uniform rod held at one end and subjected to a
thermal strain ey, is given by FEer, bd where E is the Young moduius, b is the breadth of the
section and F is a stress factor dependent on the parameter B = (w27 )X o/ E)'”? where p is the
density of the material.

Putting the full plastic force as P, = o,bd where o, is the yield stress we have

P FEer,

P, ay

Yielding of the rigid-plastic cantilever in bending first occurs at the root (see Fig. 2) at a time
not later than wt = w/2. Substituting in the above equation from eqn (34), from the first of eqns
(18) with ot = 7/2 and putting M, = o,bd*/4 and m = pbd we have on utilising the equation for
B,

A(3-1) Ed
1)3 g

£<
’ %arz(coth A —x

(36)

where the inequality occurs because in taking the first of eqns (18) with wt = 7/2 we have
overestimated the value of xr.
Since yielding first occurs at the root we need the value of [F),.,. This is given from eqn

(23) of Parkes and Carter{21] as
2568° sin (n7/4B)
,..2_,_, wini(l— 168!3 sinsnn l

This is the peak value of the stress factor and it will not necessarily co-incide in time with the
onset of bending yielding.

It is a characteristic of rigid-plastic theory that we assume E to be very large. It follows that
B will be small. For small values of B, the above equation for {F],., can be represented with
sufficient accuracy by taking the first term only and by ignoring 16B? compared with unity. We
shall take what will generally be a high value for the stress factor by writing the term sin (#/4B)

[F]x-o =




The rapidly heated rigid-plastic cantilever 955
as unity. We then have

3
[Fl= 22 a7
Substituting eqn (37) in (36) we obtain
™
p_>6 (5' I)AB &

<

B, %w‘(coth A= -;—) " .

From this point onwards it will be convenient if we retain the length ! of the cantilever only -
in the length-to-depth ratio

w=lld (39

and eliminate it from the other non-dimensional parameters. Instead of A and B we shall
therefore use .
k = A|B*u® = 8nyr, d(Elo,)

and (40)

0= Blu =3~ wd(pE)"™
Equation (38) then becoines

256(%— 1)xn’p’

v
B, < %w‘(coth A —-)l:) ' “

Remembering that the yield equation is (P/P,)*+ (M/M,) = 1, the fractional change in the
yield moment due to the presence of the longitudinal force is less than the square of the r.h.s. of
inequality (41). This expression is not very sensitive to changes in A and so we shall take A as
large and thus {coth A —(1/A)} equal to unity. We then have

Fractional error in M, < 2.44 X 10~x2Qx®. 42)

An alternative way in which longitudinal forces might contribute to errors in M, would be if
deflexions became sufficiently large for the product of end thrust and deflexion to form a
significant fraction of the full plastic moment. Up to first yield, the thermal deflexion xrx?/2
represents the true defiexion. After yielding, it substantially overestimates the deflexions. The
longitudinal force at the free end of the cantilever must be zero, but from Parkes and Carter[21]
it seems that a constant force may persist from the root up to about x/I = 0.8. Multiplying the
longitudinal force by the deflexion, we obtain a contribution to the bending moment of
FEer, bdxr(0.81)*/2. Substituting from eqn (34) for er,, and from (37) for F, and choosing the
value of xr from the first of eqns (18) with wf = #/2, we find on making the substitutions of
egns (39) and (40) that the contribution to the bending moment can be expressed for A large as

Fractional error in M, <7.23 X 10~°x**u*(0,/E) (43)

where the inequality arises from the overestimates of deflexion and of stress factor. It will be
noted that inequality (43) retains an additional non-dimensional parameter (o,/E).

6.2 Elastic effects
As with all rigid-plastic analysis, the work in the present paper can only be applied to real
materials provided that the elastic deformations are small compared with those due to plastic
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flow. In the present case this means that the maximum possible elastic strain o,/E must be
small compared with the maximum thermal strain er,,, which is also a measure of the final
plastic strain. We thus have

Fractional error in final plastic strain = o,/ Eer, (44)

or, using (34), (35) and first of eqns (40),

Fractional error in final plastic strain = "k | A€ cosechaA

wff)]

The term in A has a maximum value at A = 1.35 of 0.139, whence
Fractional error in final plastic strain <21/«. 45)

It may be noted that for 0.5 <A <4, the ratio of the maximum possible elastic curvature to the
maximum thermal curvature is about three times the fractional error in the final plastic strain.

6.3 Limitations

The zones of values of {) and « for which the errors in M, and in the final plastic strain are
less than 10% or 5% are plotted in Fig. 6 for u = 10, 50 and 250 and Elo, = 1000. It may be
noted that inequality (42) is of significance for u = 10 only. The important inequalities are (43)
and (45).

The author has been subjecting small shim steel specimens, 10 mm long by 0.06 mm deep to
laser heating of about 300us duration. Allowance has to be made for conduction in these thin
specimens and as a result the effective value of A is about 4. With a front face temperature of
1000°C, the non-dimensional parameters are g = 167, } = 5 X 10~ and x = 350, so that the worst

a
rrirrmr T LR LR LL T —rrivm

T TTTTI0T

T

-5 1 INEEa I T
10! 1 X 10"
Fig. 6. Values of , ) and « for which errors defined by equs (42), (43) and (45) are less than 10% or less
than 5%. Elo, = 1000.

10
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error is in the hypothesis of rigidity: in fact the maximum elastic strain is about 5% of the
maximum thermal strain. Longitudinal inertia effects are quite unimportant.

2.

REFERENCES

. E. W. Parkes, The expanding and contracting hinge in a rapidly heated rigid-plastic beam. Proc. R. Soc. Lond. A3,

351-364 (1974).

. 1. F. Baker, Plasticity as a factor in the design of war-time structures. In The Civil Engineer in War, Vol. 3, 30-51. The

Institution of Civil Engineers, London (1948),

. P. E. Duwez, D. S. Clark and H. F. Bohnenblust, The behaviour of long beams under impact loading. J. Appl. Mech.

17, 27-34 (1950).

. M. F. Conroy, Plastic-rigid analysis of long beams under transverse impact loading. J. Appl. Mech. 19, 465-470 (1952).
. E. W. Parkes, Some simple experiments on the dynamic plastic behaviour of mild-steel beams. Brit. Weid. J. 3, 362-366

(1956).

. E. W. Parkes, The permanent deformation of an encastré beam struck transversely at any point in its span. Proc. Inst.

Civ. Engrs. 18, 277-304 (1958).

. E. H. Lee and P. S. Symonds, Large plastic deformations of beams under transverse impact. J. Appl. Mech. 19,

308-314 (1952).

. P. S. Symonds, Dynamic load characteristics in plastic bending of beams. J. Appl. Mech. 20, 475481 (1953).
. P. S.Symonds and C. F. A. Leth, Impact of finite beams of ductile metal, J. Mech. Phys. Solids 2, 92-102 (1954).
. E. W, Parkes, The permanent deformation of a cantilever struck transversely at its tip. Proc. R. Soc. Lond. A228,

462-476 (1955).

. T. J. Mentel, The plastic deformation due to impact of a cantilever beam with an attached tip mass. J. Appl. Meck. 28,

515-524 (1958).

. S. R. Bodner and P. S. Symonds, Experimental and theoretical investigation of the plastic deformation of cantilever

beams subjected to impulsive loading. J. Appl. Mech. 29, 719-728 (1962).

. S. R Bodner and W. G. Speirs, Dynamic plasticity experiments on aluminium cantilever beams at clevated

temperatures. J. Mech. Phys. Solids 11, 65-77 (1963).

. T.C. T. Ting, The plastic deformation of a cantilever beam with strain-rate sensitivity under impulsive loading. J. Appl.

Mech. 31, 38-42 (1964).

. T. C. T. Ting, Large deformation of a rigid, ideally plastic cantilever beam. J. Appl Mech. 32, 295-302 (1965).
. R. G. Hall, §. T. S. Al-Hassani and W. Johnson, The impulsive loading of cantilevers. Int. J. Mech. Sci. 13, 415-430

(1971).

. S. J. Hashmi, S. T. S. Al-Hassani and W. Johnson, Large defiexion ¢lastic-plastic response of certain structures to

impulsive load: numerical solutions and experimental results. Int. J. Mech. Sci. 14, 843-860 (1972).

. 1. B. Martin, Impulsive loading theorems for rigid-plastic continua. J. Engng Mech. Div. ASCE, EMS, 27-42 (1964).
. P. S. Symonds and C. T. Chan, Bounds for finite deflections of impuisively loaded structures with time-dependent

plastic behaviour. Int. J. Solids Structures 11, 403-423 (1975).

. N. Jones, Dynamic behaviour of ideal fibre-reinforced rigid-plastic beams. J. Appl. Mech. 98, 319-324, 1976,
. E. W. Parkes and G. A. Carter, Dynamic thermal stresses in a pulsed reactor. Phil. Trans. R. Soc. Lond. AZ10, 325-347

(1971).
J. F. Ready, Effects due to absorption of laser radiation. J. Appl. Phys. 36, 462-8 (1965).



